20 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какова скорость звука в воде

Скорость звука и число М

Для начала давайте выясним, сверхзвук — это сколько км/ч? Какова должна быть скорость, чтобы считаться сверхзвуковой? Проблема в том, что простого и однозначного ответа на этот вопрос… Просто нет.

Есть правильный ответ — больше 1 М. Или Число Маха равное единице, это скорость звука, а выше единицы, это уже сверхзвук.

Совсем не привычное число выраженное в километрах в час. Если упростить, то объяснить можно так: скорость звука зависит о свойств среды в которой он распространяется, чем плотнее среда, тем быстрее распространяются колебания (звук это ведь волна). Таким образом на разной высоте скорость звука разная. Чем выше, тем меньше плотность воздуха и тем ниже будет местная скорость звука.

Зависимость скорости звука от высоты полета

Например, скорость звука у земли (на высоте 0 км) составит 340 метров в секунду (м/с), это 1224 км/ч. И тут важно сказать что такое значение будет: при температуре +15 и давлении 750 мм. рт. ст. и относительной влажности 0%. То есть при «стандартных» условиях.

А вот на высоте 10 000 метров, на которой летают современные пассажирские лайнеры, это уже около 299 м/с (это 1076 км/ч), то есть разница довольно значительная — 12%.

Также от высоты полета и других параметров атмосферы зависит и скорость звука, и сопротивление воздуха и, соответственно, скорость которую может развить самолет.

Скорость звука на высоте выше 11 километров практически уже не меняется, эта часть атмосферы называется «тропопауза».

То же самое в виде таблицы

Так вот число Маха представляет собой отношение скорости летательного аппарата к скорости звука на той высоте на которой он сейчас летит. Так удобнее, ведь на разной высоте скорость звука будет разной и чтобы понимать достигает ли самолет скорости звука, его скорость измеряют в числах М.

Если еще проще, то число М показывает сколько скоростей звука в скорости самолета на конкретной высоте (при определенных условиях среды). Если число Маха больше единицы, очевидно, мы имеем дело со сверхзвуковой скоростью. Поэтому чаще всего вы будете встречать пояснение для какой высоты указано конкретное число Маха.

Например, для Боинга 777 крейсерской скоростью считается 0,84 М (это дозвуковой летательный аппарат). То есть на высоте 10 000 метров при стандартных условиях принимая скорость звука за 1076 км/ч умножаем ее на 0,84 и получаем — 904 км/ч. По документации крейсерская скорость Boeing 777 составляет как раз 905 км/ч.

Что касается сверхзвуковых летательных аппаратов, то, по определению, их скорости должны быть больше скорости звука, то есть больше 1 М. Например у Су-27 это 2,35 М, что примерно 2 528 км/ч на высоте 10 км (скорость звука 295 м/с, а это 1062 км/ч).

Читать еще:  Какая самая дорогая косметика

Число М некоторых сверхзвуковых самолетов:

  • Су-27 — 2,35 М
  • Су-30 — 2,0 М
  • Миг-31 — 2,82 М
  • Eurofighter — 2,0 М
  • F-15 — 2,5 М
  • F-16 — 2,0 М
  • F-22 — 2,25 М
  • SR-71 — 3,3 М (3 529 км/ч)

А вот гиперзвуковые летательные аппараты:

  • Эксперементальный гиперзвуковой X-43A — 7,5 М (12 144 км/ч)
  • Эксперементальная ракета X-51 — 9,8М (12 144 км/ч)

SR-71 — самый быстрый серийный самолет

Еще одно замечание, число М, это качественная величина, а не количественная. То есть это не скорость в чистом виде, а критерий который показывает насколько скорость объекта выше скорости звука. Зачем? Затем что дозвуковые, трансзвуковые, сверхзвуковые или гиперзвуковые скорости очень сильно отличаются по сути.

Пилоту (и инженеру тоже) важно знать какой у него сейчас режим обтекания самолета (дозвуковой, трансзвуковой или сверхзвуковой). Например, во многих указателях скорости есть отдельный циферблат показывающий значение числа Маха в дополнению к приборной скорости.

На картинке в начале этого повествования изображен трансзвуковой режим. Это значит, что сам самолет еще не превысил скорость звука, а на некоторых его участках (на фото это очень хорошо видно по белым «клиньям») скорость обтекания уже достигла скорости звука. Поэтому и образовались скачки уплотнения которые хорошо видны благодаря образованию конденсата позади них.

Скорость звука

Скорость звука — скорость распространения упругих волн в среде — как продольных в газах, жидкостях и твердых телах, так и поперечных (сдвиговых) в твердой среде. Определяется упругостью и плотностью среды. Скорость звука в газах не является величиной постоянной и зависит от температуры данного вещества, в монокристаллах зависит от направления распространения волны и при заданных внешних условиях обычно не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом.

Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.

Содержание

Расчёт скорости в жидкости и газе

Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

где — адиабатическая сжимаемость среды; — плотность.

Для газов эта формула выглядит так:

где — показатель адиабаты: 5/3 для одноатомных газов, 7/5 для двухатомных (и для воздуха), 4/3 для многоатомных; — постоянная Больцмана; — универсальная газовая постоянная; — абсолютная температура в кельвинах; — температура в градусах Цельсия; — молекулярная масса; — молярная масса. По порядку величины скорость звука в газах близка к средней скорости теплового движения молекул и в приближении постоянства показателя адиабаты пропорциональна квадратному корню из абсолютной температуры.

Читать еще:  Как рассаживают гостей на свадьбе

Данные выражения являются приближенными, поскольку основываются на уравнениях, описывающих поведение идеального газа. При больших давлениях и температурах необходимо вносить соответствующие поправки.

Для расчета сжимаемости многокомпонентной смеси, состоящей из невзаимодействующих друг с другом жидкостей и/или газов, применяется уравнение Вуда. Это же уравнение применимо и для оценки скорости звука в нейтральных взвесях.

Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

Твёрдые тела

В однородных твёрдых телах могут существовать два типа объемных волн, отличающихся друг от друга поляризацией колебаний относительно направления распространения волны: продольная (P-волна) и поперечная (S-волна). Скорость распространения первой всегда выше, чем скорость второй :

где — модуль всестороннего сжатия; — модуль сдвига; — модуль Юнга; — коэффициент Пуассона. Как и для случая с жидкой или газообразной средой, при расчетах должны использоваться адиабатические модули упругости.

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода. При частоте колебаний ниже частоты Био, скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана.

При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

Скорость звука в воде

В чистой воде скорость звука составляет 1500 м/с (см. опыт Колладона—Штурма). Прикладное значение имеет также скорость звука в солёной воде океана. Скорость звука увеличивается в более солёной и более тёплой воде. При большем давлении скорость также возрастает, то есть чем глубже, тем скорость звука больше. Разработано несколько теорий распространения звука в воде.

Например, теория Вильсона 1960 года для нулевой глубины даёт следующее значение скорости звука:

,

Иногда также пользуются упрощённой формулой Лероя:

,

где z — глубина в метрах. Эта формула обеспечивает точность порядка 0,1 м/с для T [2] .

Скорость звука в воде

Звук – одна из составляющих нашей жизни, и человек слышит его везде. Чтобы более подробно рассмотреть это явление, вначале надо разобраться с самим понятием. Для этого надо обратиться к энциклопедии, где написано, что «звук – это упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания». Говоря более простым языком – это слышимые колебания в какой-либо среде. От того, какая она, и зависят основные характеристики звука. В первую очередь – скорость распространения, например, скорость звука в воде отличается от другой среды.

Любой звуковой аналог обладает определенными свойствами (физическими особенностями) и качествами (отражение этих признаков в человеческих ощущениях). Например, продолжительность-длительность, частота-высота, состав-тембр и так далее.

Читать еще:  Какое значение имеет форма тела рыбы

Скорость звука в воде значительно выше, чем, допустим, в воздухе. Следовательно, распространяется он быстрее и намного дальше слышен. Происходит такое из-за высокой молекулярной плотности водной среды. Она в 800 раз плотнее, чем воздух и сталь. Отсюда следует, что распространение звука во многом зависит от среды. Обратимся к конкретным цифрам. Так, скорость звука в воде равняется 1430м/с, в воздухе – 331,5м/с.

Низкочастотный звук, к примеру, шум, который производит работающий судовой двигатель, всегда слышится несколько раньше, чем судно появляется в зоне видимости. Его скорость зависит от нескольких вещей. Если температура воды повышается, то, естественно, повышается скорость звука в воде. То же самое происходит с повышением солености воды и давления, которое растет с увеличением глубины водного пространства. Особую роль на скорость может оказать такое явление, как термоклинья. Это такие места, в которых встречаются разной температуры слои воды.

Также в таких местах разная плотность воды (из-за разности в температурном режиме). И когда волны звука проходят через такие разноплотные слои, они утрачивают большую часть своей силы. Столкнувшись с термоклином, звуковая волна частично, а иногда и полностью, отражается (степень отражения зависит от угла, под которым падает звук), после чего, по другую сторону этого места, образуется теневая зона. Если рассмотреть пример, когда звуковой источник располагается в водном пространстве выше термоклина, то уже ниже услышать вообще что-то будет не то что сложно, а практически невозможно.

Звуковые колебания, которые издаются над поверхностью, в самой воде никогда не слышны. И наоборот происходит, когда источник шума под водным слоем: над ним он не звучит. Яркий тому пример – современные дайверы. Их слух сильно снижается из-за того, что вода воздействует на барабанные перепонки, а высокая скорость звука в воде снижает качество определения направления, откуда тот движется. Этим самым притупляется стереофоническая способность восприятия звука.

Под слоем воды звуковые волны поступают в человеческое ухо больше всего через кости черепной коробки головы, а не как в атмосфере, через барабанные перепонки. Результатом такого процесса становится его восприятие одновременно обоими ушами. Мозг человека не способен в это время различить места, откуда поступают сигналы, и в какой интенсивности. Итогом становится появление сознания, что звук как бы накатывает со всех сторон одновременно, хотя это далеко не так.

Кроме описанного выше, звуковые волны в водном пространстве имеют такие качества, как поглощение, расходимость и рассеивание. Первое – когда сила звука в соленой воде постепенно сходит на нет за счет трения водной среды и находящихся в ней солей. Расходимость проявляется в удалении звука от его источника. Он будто растворяется в пространстве как свет, и в итоге его интенсивность значительно падает. А пропадают колебания совсем из-за рассеивания на всяческих препятствиях, неоднородностях среды.

Источники:

http://interesnye-istorii.in.ua/sonic-speed/
http://dal.academic.ru/dic.nsf/ruwiki/486402
http://fb.ru/article/47255/skorost-zvuka-v-vode

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector