Как работает машинное обучение
Машинное обучение для чайников
С технологиями машинного обучения сегодня сталкивается повседневно каждый житель мегаполиса. Но не каждый знает, на что машинное обучение действительно способно.
Машинное обучение с каждым днем занимает всё большее место в нашей жизни ввиду огромного спектра его применений. Начиная от анализа пробок и заканчивая самоуправляемыми автомобилями, всё больше задач перекладывается на самообучаемые машины.
Мы порой даже примерно не представляем, как работают некоторые приложения, основанные на методах машинного обучения. Скажем, никто не сможет вам ответить на вопрос «Почему мне сегодня в рекламе показали сайт A, а не Б?». Наиболее печальным во всей этой ситуации является то, что большинство людей имеет неверное представление о машинном обучении.
Вводная
Машинное обучение считается ветвью искусственного интеллекта, основная идея которого заключается в том, чтобы компьютер не просто использовал заранее написанный алгоритм, а сам обучился решению поставленной задачи.
Любую работающую технологию машинного обучения можно условно отнести к одному из трёх уровней доступности. Первый уровень — это когда она доступна только различным технологическим гигантам уровня Google или IBM. Второй уровень — это когда ей может воспользоваться людей студент с некоторым багажом знаний. Третий уровень — это когда даже бабуля способна с ней совладать.
Машинное обучение находится сейчас на стыке второго и третьего уровней, за счёт чего скорость изменения мира с помощью данной технологии растет с каждым днем.
Обучение с учителем и без учителя
Большую часть задач машинного обучения можно разделить на обучение с учителем (supervised learning) и обучение без учителя (unsupervised learning). Если вы представили себе программиста с плёткой в одной руке и куском сахара в другой, вы немного ошиблись. Под «учителем» здесь понимается сама идея вмешательства человека в обработку данных. При обучении с учителем у нас есть данные, на основании которых нужно что-то предсказать, и некоторые гипотезы. При обучении без учителя у нас есть только данные, свойства которых мы и хотим найти. На примерах разницу вы увидите немного яснее.
Обучение с учителем
У нас есть данные о 10 000 квартирах в Москве, причём известна площадь каждой квартиры, количество комнат, этаж, на котором она расположена, район, наличие парковки, расстояние до ближайшей станции метро и так далее. Кроме того, известна стоимость каждой квартиры. Нашей задачей является построение модели, которая на основе данных признаков будет предсказывать стоимость квартиры. Это классический пример обучения с учителем, где у нас есть данные (10 000 квартир и различные параметры для каждой квартиры, называемые признаками) и отклики (стоимость квартиры). Такая задача называется задачей регрессии. О том, что это такое, мы поговорим чуть позже.
Другие примеры: на основании различных медицинских показателей предсказать наличие у пациента рака. Или на основании текста электронного письма предсказать вероятность того, что это спам. Такие задачи являются задачами классификации.
Обучение без учителя
Интереснее ситуация обстоит с обучением без учителя, где нам неизвестны «правильные ответы». Пусть нам известны данные о росте и весе некоторого числа людей. Необходимо сгруппировать данные на 3 категории, чтобы для каждой категории людей выпустить рубашку подходящего размера. Такая задача называется задачей кластеризации.
Еще одним примером можно взять ситуацию, когда у нас каждый объект описывается, скажем, 100 признаками. Проблема таких данных заключается в том, что построить графическую иллюстрацию таких данных, мягко говоря, затруднительно, поэтому мы можем уменьшить количество признаков до двух-трёх. Тогда можно визуализировать данные на плоскости или в пространстве. Такая задача называется задачей уменьшения размерности.
Классы задач машинного обучения
В предыдущем разделе мы привели несколько примеров задач машинного обучения. В этом мы постараемся обобщить категории таких задач, сопроводив список дополнительными примерами.
- Задача регрессии: на основании различных признаков предсказать вещественный ответ. Другими словами, ответом может быть 1, 5, 23.575 или любое другое вещественное число, которое, например, может олицетворять стоимость квартиры. Примеры: предсказание стоимости акции через полгода, предсказание прибыли магазина в следующем месяце, предсказание качества вина на слепом тестировании.
- Задача классификации: на основании различных признаков предсказать категориальный ответ. Другими словами, ответов в такой задаче конечное количество, как в случае с определением наличия у пациента рака или определения того, является ли письмо спамом. Примеры: распознавание текста по рукописному вводу, определение того, находится на фотографии человек или кот.
- Задача кластеризации: разбиение данных на похожие категории. Примеры: разбиение клиентов сотового оператора по платёжеспособности, разбиение космических объектов на похожие (галактики, планеты, звезды и так далее).
- Задача уменьшения размерности: научиться описывать наши данные не N признаками, а меньшим числом (как правило, 2-3 для последующей визуализации). В качестве примера помимо необходимости для визуализации можно привести сжатие данных.
- Задача выявления аномалий: на основании признаков научиться различать отличать аномалии от «не-аномалий». Кажется, что от задачи классификации эта задача ничем не отличается. Но особенность выявления аномалий состоит в том, что примеров аномалий для тренировки модели у нас либо очень мало, либо нет совсем, поэтому мы не можем решать такую задачу как задачу классификации. Пример: определение мошеннических транзакций по банковской карте.
Нейронные сети
В машинном обучении есть большое число алгоритмов, причём некоторые являются довольно универсальными. В качестве примеров можно привести метод опорных векторов, бустинг над решающими деревьями или те же нейронные сети. К сожалению, большая часть людей довольно смутно представляет себе суть нейронных сетей, приписывая им свойства, которыми они не обладают.
Нейронная сеть (или искусственная нейронная сеть) — это сеть нейронов, где каждый нейрон является математической моделью реального нейрона. Нейронные сети начали пользоваться большой популярностью в 80-х и ранних 90-х, однако в конце 90-х их популярность сильно упала. Впрочем, в последнее время это одна из передовых технологий, используемых в машинном обучении, применяемая в огромном количестве приложений. Причина возврата популярности проста: увеличились вычислительные способности компьютеров.
С помощью нейронных сетей можно решать как минимум задачи регрессии и классификации и строить крайне сложные модели. Не вдаваясь в математические подробности, можно сказать, что в середине прошлого века Андрей Николаевич Колмогоров доказал, что с помощью нейронной сети можно аппроксимировать любую поверхность с любой точностью.
Фактически же, нейрон в искусственной нейронной сети представляет собой математическую функцию (например, сигмоидную функцию), которой на вход приходит какое-то значение и на выходе получается значение, полученное с помощью той самой математической функции.
Ограниченность нейронных сетей
Впрочем, в нейронных сетях нет ничего магического и в большинстве случаев опасения касательно сценария «Терминатора» не имеют под собой оснований. Допустим, учёные натренировали нейронную сеть на распознавание рукописных цифр (такое приложение может использовать, скажем, на почте). Как может работать такое приложение и почему здесь не о чем беспокоиться?
Допустим, мы работаем с изображениями 20×20 пикселей, где каждый пиксель представляется оттенком серого (всего 256 возможных значений). В качестве ответа у нас имеется одна из цифр: от 0 до 9. Структура нейронной сети будет следующая: в первом слое будет 400 нейронов, где значение каждого нейрона будет равно интенсивности соответствующего пикселя. В последнем слое будет 10 нейронов, где в каждом нейроне будет вероятность того, что на изначальном изображении нарисована соответствующая цифра. Между ними будет некоторое число слоев (такие слоя называются скрытыми) с одинаковым количеством нейронов, где каждый нейрон соединён с нейроном из предыдущего слоя и ни с какими более.
Рёбрам нейронной сети (на картинке они показаны как стрелочки) будут соответствовать некоторые числа. Причем значение в нейроне будет считаться как следующая сумма: значение нейрона из предыдущего слоя * значение ребра, соединяющего нейроны. Затем от данной суммы берётся определенная функция (например, сигмоидная функция, о которой мы говорили ранее).
В конечном итоге задача тренировки нейронной сети заключается в том, чтобы подобрать такие значения в ребрах, чтобы отдавая первому слою нейронной сети интенсивности пикселей, на последнем слое мы получали вероятности того, что на изображении нарисована какая-то цифра.
Более простыми словами, в данном случае нейронная сеть представляет собой вычисление математической функции, где аргументы — это другие математические функции, которые зависят от других математических функций и так далее. Разумеется, при подобном вычислении математических функций, где подгоняются некоторые аргументы, ни о каком экзистенциальном риске речи идти не может.
Интересные факты и лайфхаки
Приведём несколько интересных и не совсем очевидных примеров использования машинного обучения в реальной жизни.
Например, вторая кампания Барака Обамы была фактически выиграна лучшей на тот момент командой в области анализа данных. Разумеется, речь не идет о том, что они советовали ему соврать о чем-то, работа строилась значительно более умным путем: они выбирали, в каком штате, перед какой аудиторией, в какой день и на какую тему он должен выступать. Причем каждый раз они замеряли, как это сказывается на опросах вида «За кого бы вы проголосовали, если бы выборы были в ближайшее воскресенье?». Другими словами, подобные решения принимали не политтехнологи, а исключительно специалисты по анализу данных. Особенно интересным это становится в свете того, что, по оценкам специалистов, это дало ему преимущество в 8-10%.
Кроме того, современный интернет довольно сложно представить без ретаргетинга, или персонализированной рекламы. Вспомните: вы выбираете какой-то продукт в интернете, а после покупки ещё на протяжении двух недель вам показывают его в различного рода рекламе. В одном из своих выступлений директор по маркетингу сервисов компании «Яндекс» Андрей Себрант дал на этот счёт такой совет:
Дарю лайфхак. После того как вы купили топор, чтобы не любоваться топорами ещё две недели, зайдите в магазин модной одежды. Дальше, в зависимости от ваших гендерных предпочтений, зайдите либо в мужское, либо в женское бельё. Бросьте несколько предметов в корзину, закройте корзину и уйдите. У этих ребят очень большие бюджеты на ретаргетинг: следующие две недели вас, в зависимости от ваших предпочтений, будут преследовать либо красивые полуодетые мужчины, либо красивые полуодетые женщины. Это лучше, чем топор.
Рекомендации по обучению
Если у вас появилось желание изучить технологии машинного обучения, стоит отметить, что для глубокого изучения предмета с пониманием всего фундамента следует разбираться как минимум в математическом анализе, линейной алгебре и методах оптимизации (с упором на последние два). Кроме того, желательно знать основы программирования и какой-нибудь язык программирования. В машинном обучении, как правило, используется R, Python или Matlab.
Для самого начального изучения отлично подойдет классический курс Эндрю Энга на Coursera по машинному обучению. Главной его особенностью является исключительная практическая направленность, причём обширный багаж математических знаний в данном курсе абсолютно не обязателен.
Мотивировать его изучение можно следующим образом: посмотрите учебный план. Если вы просмотрите все лекции и решите все задания, то вы гарантированно сможете применять все эти вещи на практике. В частности, вы освоите алгоритмы линейной регрессии (задача регрессии), логистической регрессии, метода опорных векторов, нейронных сетей (задача классификации), K-means (кластеризация), PCA (понижение размерности), выявления аномалий и узнаете как построить рекомендательную систему (рекомендация товаров по вашим оценкам, например, фильмов или песен). На последней неделе курса вам также расскажут, как построить систему, которая будет находить и расшифровывать надписи на картинках или опознавать людей.
Для тех, кто хочет изучать предмет со всеми математическими тонкостями в лучших традициях сильных технических вузов, можно порекомендовать курс от ВШЭ или специализацию от МФТИ. Заметим лишь, что специализация является платной и для доступа к ней придется оформить подписку приблизительно за 3000 рублей в месяц. Впрочем, есть бесплатный период в 7 дней.
Что такое машинное обучение простыми словами
Искусственный интеллект
Лет 5 назад искусственный интеллект (он же ИИ) ассоциировался с фантастическими фильмами, где роботы спасали мир, а суперкомпьютеры пытались его поработить. Сегодня про ИИ говорят все. Давайте попробуем разобраться, что за магия скрывается за человекоподобными машинами, как они думают и зачем нужно машинное обучение.
Хотя тайна человеческого мозга еще не раскрыта и до создания его программных аналогов нам далеко, сегодня уже существуют роботы, которые способны выполнять определенные действия и принимать решения гораздо эффективнее, чем Homo Sapiens.
ИИ вовсю принимает участие в медицине, помогая врачам выявить болезнь Альцгеймера по речи пациента, определить предрасположенность к заболеваниям, и творит многие другие удивительные вещи. Умные машины применяются почти во всех возможных отраслях. Например, компания LG планирует в 2023 году открыть завод по производству техники, на котором все процессы, начиная от закупки сырья, заканчивая контролем качества выпускаемой продукции, будут полностью автоматизированы.
Мощно, не правда ли? И это всё не набор команд, которые выполняются при определенных условиях. Это программа, которая способна анализировать и на основании данных выполнять то или иное действие.
Чтобы ИИ научился принимать правильные решение, его нужно обучить, этот процесс и называется машинным обучением (machine learning).
Machine learning — что нужно?
Выделяют три составляющие машинного обучения (ML):
Данные. Если мы хотим предсказывать погоду, необходима сводка погоды за последние несколько лет (чем больше, тем лучше). Хотим определять спам, нужны примеры таких писем. Чем качественнее данные, тем эффективнее будет работать программа.
Признаки. Это набор свойств, характеристик или признаки, которые описывают нашу модель. Если говорим о погоде, то это температура, скорость ветра, время года. В случае со спамом — это отправители, темы писем, определенные фразы и изображения. Правильно подобранные признаки — залог успешного обучения.
Алгоритм. Тут всё просто. Каждую задачу можно решить разными способами. Для разных целей можно подобрать разные алгоритмы.
Но всё же главное в ML — это данные. Каким бы совершенным не был бы алгоритм работы, если качество данных не очень, то результат будет соответствующим.
Методы машинного обучения
Как работает машинное обучение? Искусственный интеллект похож на маленького ребенка, которому родители объясняют, почему небо голубое, а трава зеленая. Также методом проб и ошибок он самостоятельно познаёт мир.
Существует множество методов обучения, каждый из которых включает в себя разные алгоритмы. Поговорим про самые распространённые базовые методы:
- классическое обучение;
- обучение с подкреплением;
- нейросети и глубокое обучение.
Пробежимся кратко по каждому из них.
Классическое обучение
Большинство ИИ использует классическое обучение. Это простые алгоритмы, основанные на закономерностях в данных.
Есть два типа классического обучения:
- с учителем (supervised learning);
- без учителя (unsupervised learning).
Обучение с учителем
Принцип простой. Мы обучаем машину на реальных примерах. Допустим, мы хотим научить её отличать яблоки от груш. Мы загружаем в программу данные (dataset) и говорим ей, что на этих картинках изображены яблоки, а на этих груши. А она, в свою очередь, находит общие признаки, анализирует их и выстраивает связи.
Если мы дадим машине картинку без описания, то она на основании полученных данных должна верно определить, что за фрукт на ней изображен.
Поэтому важно отбирать правильные данные для обучения и загружать их как можно больше: чем больше данных мы загрузим, тем точнее и быстрее будет происходить определение.
Обучение без учителя
Этот метод используется, когда нет возможности предоставить роботу размеченные данные. Программа сама находит закономерности, общие признаки и классифицирует полученные данные.
Обучение без учителя отлично подходит для кластеризации (сегментации) данных. Его часто используют в таргентированной рекламе. Когда действия или предпочтения пользователя нельзя заранее классифировать.
Обучение с подкреплением
Возьмем для примера игру «Змейка». На поле расположен объект, до которого змейке необходимо добраться, но сама она не знает, как это сделать и какой путь самый эффективный, она знает только расстояние до объекта. Методом проб и ошибок змейка находит оптимальный вариант движения и анализирует ситуации, которые ведут к проигрышу.
Данный способ также используют для обучения роботов-пылесосов или самоуправляемых автомобилей. Обучение похоже на игру: за правильно принятое решение машина получает балл, за ошибки — баллы вычитаются.
Нейросети и глубокое обучение (Deep learning)
Любая нейросеть — это набор нейронов (функций) и связей между ними. Задача нейрона — взять входные числа, выполнить над ними определенные действия и выдать результат. Пример полезного нейрона: просуммировать все цифры со входов и, если их сумма больше N, отправить на выход единицу, иначе — ноль.
Связи — это каналы, через которые нейроны отправляют друг другу числа. У каждой связи есть своя оценка — параметр, который можно условно представить как прочность связи. Когда через связь с оценкой 0.5 проходит число 10, оно превращается в 5. Сам нейрон не разбирается, что к нему пришло, и суммирует всё подряд. Получается, что оценка нужна для управления тем, на какие входы нейрон должен реагировать, а на какие — нет.
Нейроны и связи — это условное обозначение, в реальном программировании нейросеть представляет собой матрицу и всё считается матричными представлениями, так как это эффективно по скорости.
Для чего необходимы нейронные сети:
- определение объектов на видео и фото;
- обработка фотографий;
- распознавание речи;
- машинный перевод.
В упрощённом виде работа нейросети выглядит примерно так:
На деле все немного сложнее. Изображение делится на пиксели, затем выявляются доминирующие линии по горизонтали и по вертикали, всё это складывается в несколько массивов, из которых получается очертание объекта. В итоге, на основании этих данных мы приходим к нужному результату.
Простыми словами: как работает машинное обучение
В последнее время все технологические компании твердят о машинном обучении, но как оно работает, никто не рассказывает. А мы расскажем — максимально простыми словами.
В последнее время все технологические компании твердят о машинном обучении. Мол, столько задач оно решает, которые раньше только люди и могли решить. Но как конкретно оно работает, никто не рассказывает. А кто-то даже для красного словца машинное обучение называет искусственным интеллектом.
Как обычно, никакой магии тут нет, все одни технологии. А раз технологии, то несложно все это объяснить человеческим языком, чем мы сейчас и займемся. Задачу мы будем решать самую настоящую. И алгоритм будем описывать настоящий, подпадающий под определение машинного обучения. Сложность этого алгоритма игрушечная — а вот выводы он позволяет сделать самые настоящие.
Задача: отличить осмысленный текст от белиберды
Текст, который пишут настоящие люди, выглядит так:
Могу творить, могу и натворить!
У меня два недостатка: плохая память и что-то еще.
Никто не знает столько, сколько не знаю я.
Белиберда выглядит так:
ОРПорыав аоырОрпаыор ОрОРАыдцуцзущгкгеуб ыватьыивдцулвдлоадузцщ
Йцхяь длваополц ыадолцлопиолым бамдлотдламда.
Наша задача — разработать алгоритм машинного обучения, который бы отличал одно от другого. А поскольку мы говорим об этом применительно к антивирусной тематике, то будем называть осмысленный текст «чистым», а белиберду — «зловредной». Это не просто какой-то мысленный эксперимент, похожая задача на самом деле решается при анализе реальных файлов в реальном антивирусе.
Для человека задача кажется тривиальной, ведь сразу видно, где чистое, а где зловредное, но вот формализовать разницу или тем более объяснить ее компьютеру — уже сложнее. Мы используем машинное обучение: сначала дадим алгоритму примеры, он на них «обучится», а потом будет сам правильно отвечать, где что.
Алгоритм
Наш алгоритм будет считать, как часто в нормальном тексте одна конкретная буква следует за другой конкретной буквой. И так для каждой пары букв. Например, для первой чистой фразы — «Могу творить, могу и натворить!» — распределение получится такое:
ат — 1
во — 2
гу — 2
ит — 2
мо — 2
на — 1
ог — 2
ор — 2
ри — 2
тв — 2
ть — 2
Что получилось: за буквой «в» следует буква «о» — два раза, а за буквой «а» следует буква «т» — один раз. Для простоты мы не учитываем знаки препинания и пробелы.
На этом этапе мы понимаем, что для обучения нашей модели одной фразы мало: и сочетаний недостаточное количество, и разница между частотой появления разных сочетаний не так велика. Поэтому надо взять какой-то существенно больший объем данных. Например, давайте посчитаем, какие сочетания букв встречаются в первом томе «Войны и мира»:
то — 8411
ст — 6591
на — 6236
го — 5639
ал — 5637
ра — 5273
не — 5199
по — 5174
ен — 4211
оу — 31
мб — 2
тж — 1
Разумеется, это не вся таблица сочетаний, а лишь ее малая часть. Оказывается, вероятность встретить «то» в два раза выше, чем «ен«. А чтобы за буквой «т» следовала «ж» — такое встречается лишь один раз, в слове «отжившим».
Отлично, «модель» русского языка у нас теперь есть, как же ее использовать? Чтобы определить, насколько вероятно исследуемая нами строка чистая или зловредная, посчитаем ее «правдоподобность». Мы будем брать каждую пару букв из этой строки, определять по «модели» ее частоту (по сути, реалистичность сочетания букв) и перемножать эти числа:
F(мо) * F(ог) * F(гу) * F(тв) * . =
2131 * 2943 * 474 * 1344 * . = правдоподобность
Также в финальном значении правдоподобности следует учесть количество символов в исследуемой строке — ведь чем она была длиннее, тем больше чисел мы перемножили. Поэтому из произведения извлечем корень нужной степени (длина строки минус один).
Использование модели
Теперь мы можем делать выводы: чем больше полученное число — тем правдоподобнее исследуемая строка ложится в нашу модель. Стало быть, тем больше вероятность, что ее писал человек, то есть она чистая.
Если же исследуемая строка содержит подозрительно большое количество крайне редких сочетаний букв (например, «ёё», «тж», «ъь» и так далее), то, скорее всего, она искусственная — зловредная.
Для строчек выше правдоподобность получилась следующая:
Могу творить, могу и натворить! — 1805 баллов
У меня два недостатка: плохая память и что-то еще. — 1535 баллов
Никто не знает столько, сколько не знаю я. — 2274 балла
ОРПорыав аоырОрпаыор ОрОРАыдцуцзущгкгеуб ыватьыивдцулвдлоадузцщ — 44 балла
Йцхяь длваополц ыадолцлопиолым бамдлотдламда — 149 баллов
Как видите, чистые строки правдоподобны на 1000–2000 баллов, а зловредные недотягивают и до 150. То есть все работает так, как задумано.
Чтобы не гадать, что такое «много», а что — «мало», лучше доверить определение порогового значения самой машине (пусть обучается). Для этого скормим ей некоторое количество чистых строк и посчитаем их правдоподобность, а потом скормим немного зловредных строк — и тоже посчитаем. И вычислим некоторое значение посередине, которое будет лучше всего отделять одни от других. В нашем случае получится что-то в районе 500.
В реальной жизни
Давайте осмыслим, что же у нас получилось.
1. Мы выделили признаки чистых строк, а именно пары символов.
В реальной жизни — при разработке настоящего антивируса — тоже выделяют признаки из файлов или других объектов. И это, кстати, самый важный шаг: от уровня экспертизы и опыта исследователей напрямую зависит качество выделяемых признаков. Понять, что же на самом деле важно, — это все еще задача человека. Например, кто сказал, что надо использовать пары символов, а не тройки? Такие гипотезы как раз и проверяют в антивирусной лаборатории. Отмечу, что у нас для отбора наилучших и взаимодополняющих признаков тоже используется машинное обучение.
2. На основании выделенных признаков мы построили математическую модель и обучили ее на примерах.
Само собой, в реальной жизни мы используем модели чуть посложнее. Сейчас наилучшие результаты показывает ансамбль решающих деревьев, построенный методом Gradient boosting, но стремление к совершенству не позволяет нам успокоиться.
3. На основе математической модели мы посчитали рейтинг «правдоподобности».
В реальной жизни мы обычно считаем противоположный рейтинг — рейтинг вредоносности. Разница, казалось бы, несущественная, но угадайте, насколько неправдоподобной для нашей математической модели покажется строка на другом языке или с другим алфавитом. Антивирус не имеет права допустить ложное срабатывание на целом классе файлов только по той причине, что «мы его не проходили».
Альтернатива машинному обучению
20 лет назад, когда вредоносов было мало, каждую «белиберду» можно было просто задетектить с помощью сигнатур — характерных отрывков. Для примеров выше «сигнатуры» могли бы быть такими:
ОРПорыав аоырОрпаыор ОрОРАыдцуцзущгкгеуб ыватьыивдцулвдлоадузцщ
Йцхяь длваополц ыадолцлопиолым бамдлотдламда
Антивирус сканирует файл, если встретил «зущгкгеу«, говорит: «Ну понятно, это белиберда номер 17». А если найдет «длотдламд» — то «белиберда номер 139».
15 лет назад, когда вредоносов стало много, преобладать стало «дженерик»-детектирование. Вирусный аналитик пишет правила, что для осмысленных строк характерно:
- Длина слов от 1 до 20 символов.
- Заглавные буквы очень редко встречаются посередине слова, цифры тоже.
- Гласные обычно более-менее равномерно перемежаются с согласными.
- И так далее. Если много критериев нарушено — детектируем эту строку как зловредную.
По существу, это примерно то же самое, только вместо математической модели в этом случае набор правил, которые аналитик должен вручную написать. Это хорошо работает, но требует времени.
И вот 10 лет назад, когда вредоносов стало ну просто очень много, начали робко внедряться алгоритмы машинного обучения. Поначалу по сложности они были сопоставимы с описанным нами простейшим примером, но мы активно нанимали специалистов и наращивали экспертизу. Как итог — у нас лучший уровень детектирования.
Сейчас без машинного обучения не работает ни один нормальный антивирус. Если оценивать вклад в защиту пользователей, то с методами на основе машинного обучения по статическим признакам могут посоперничать разве что методы на основе анализа поведения. Но только при анализе поведения тоже используется машинное обучение. В общем, без него уже никуда.
Недостатки
Преимущества понятны, но неужели это серебряная пуля, спросите вы. Не совсем. Этот метод хорошо справляется, если описанный выше алгоритм будет работать в облаке или в инфраструктуре, постоянно обучаясь на огромных количествах как чистых, так и вредоносных объектов.
Также очень хорошо, если за результатами обучения присматривает команда экспертов, вмешивающихся в тех случаях, когда без опытного человека не обойтись.
В этом случае недостатков действительно немного, а по большому счету только один — нужна эта дорогостоящая инфраструктура и не менее дорогостоящая команда специалистов.
Другое дело, когда кто-то пытается радикально сэкономить и использовать только математическую модель и только на стороне продукта, прямо у клиента. Тогда могут начаться трудности.
1. Ложные срабатывания.
Детектирование на базе машинного обучения — это всегда поиск баланса между уровнем детектирования и уровнем ложных срабатываний. И если нам захочется детектировать побольше, то ложные срабатывания будут. В случае машинного обучения они будут возникать в непредсказуемых и зачастую труднообъяснимых местах. Например, эта чистая строка — «Мцыри и Мкртчян» — распознается как неправдоподобная: 145 баллов в модели из нашего примера. Поэтому очень важно, чтобы антивирусная лаборатория имела обширную коллекцию чистых файлов для обучения и тестирования модели.
Злоумышленник может разобрать такой продукт и посмотреть, как работает модель. Он человек и пока если не умнее, то хотя бы креативнее машины — поэтому он подстроится. Например, следующая строка считается чистой (1200 баллов), хотя ее первая половина явно вредоносная: «лоыралоыврачигшуралорыловарДобавляем в конец много осмысленного текста, чтобы обмануть машину». Какой бы умный алгоритм ни использовался, его всегда может обойти человек (достаточно умный). Поэтому антивирусная лаборатория обязана иметь продвинутую инфраструктуру для быстрой реакции на новые угрозы.
Один из примеров обхода описанного нами выше метода: все слова выглядят правдоподобно, но на самом деле это бессмыслица. Источник
3. Обновление модели.
На примере описанного выше алгоритма мы упоминали, что модель, обученная на русских текстах, будет непригодна для анализа текстов с другим алфавитом. А вредоносные файлы, с учетом креативности злоумышленников (смотри предыдущий пункт), — это как будто постепенно эволюционирующий алфавит. Ландшафт угроз меняется довольно быстро. Мы за долгие годы исследований выработали оптимальный подход к постепенному обновлению модели прямо в антивирусных базах. Это позволяет дообучать и даже полностью переобучать модель «без отрыва от производства».
Заключение
- Мы рассмотрели реальную задачу.
- Разработали реальный алгоритм машинного обучения для ее решения.
- Провели параллели с антивирусной индустрией.
- Рассмотрели с примерами достоинства и недостатки такого подхода.
Несмотря на огромную важность машинного обучения в сфере кибербезопасности, мы в «Лаборатории Касперского» понимаем, что лучшую в мире киберзащиту обеспечивает именно многоуровневый подход.
Все в антивирусе должно быть прекрасно — и поведенческий анализ, и облачная защита, и алгоритмы машинного обучения, и многое-многое другое. Но об этом «многом другом» — в следующий раз.
Источники:
http://newtonew.com/tech/machine-learning-novice
http://www.reg.ru/support/vps-servery/oblachnie-serveri-vps/usluga-oblachnyye-servery/chto-takoe-mashinnoe-obuchenie-prostymi-slovami
http://www.kaspersky.ru/blog/machine-learning-explained/13605/